StudySmarter - The all-in-one study app.
4.8 • +11k Ratings
More than 3 Million Downloads
Free
Americas
Europe
The endocrine system is one of the key regulatory systems within the body. It consists of a series of glands that interact with each other and external factors to control organs located far away from them by secreting hormones into the bloodstream. It works in concert with the nervous system, however, instead of short term rapid changes, it creates slower acting, longer-lasting changes in the body.
Explore our app and discover over 50 million learning materials for free.
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenNie wieder prokastinieren mit unseren Lernerinnerungen.
Jetzt kostenlos anmeldenThe endocrine system is one of the key regulatory systems within the body. It consists of a series of glands that interact with each other and external factors to control organs located far away from them by secreting hormones into the bloodstream. It works in concert with the nervous system, however, instead of short term rapid changes, it creates slower acting, longer-lasting changes in the body.
There are four main types of cell signalling used to convey messages within the body. These vary in the range and type of signalling molecule used. In increasing order of range, the four signalling strategies are:
The type of signalling used in the endocrine system is, as the name suggests, endocrine signalling. A brief overview of each of these is provided below.
Autocrine signalling is used by cells to effect changes within themselves. The cell releases a signalling molecule,
Cytokines are a type of protein that exert an effect on our immune system!
Juxtacrine signalling is used by cells to effect changes directly in neighbouring cells. In this mode of signalling, nothing is released from the signalling cell. Instead, proteins on the signalling cell interact with receptor proteins on or in the receiving cell.
There are three sub-types of juxtacrine signalling. In one type, surface proteins on the signaller cell interact with
Paracrine signalling is used by cells to effect changes within cells in the local area. The signalling cell releases paracrine factors into the surrounding area. These factors then spread into the surrounding area.
Endocrine signalling is the type of cell signalling used by the endocrine system. Endocrine signalling relies on the use of chemical signalling molecules called hormones.
This form of signalling can act on cells throughout the body, outside of the local area, a significant increase in communication range when compared to the above signalling methods. This range is achieved by the gland secreting the hormone into the bloodstream, rather than the immediate extracellular area. The bloodstream then carries the hormone around the body, ready for it to interact with relevant receptors on its target.
Hormones within the human body belong to five classes, determined by the compounds they are formed from. Protein hormones are, as the name suggests, proteins. Amino acid hormones are modified amino acids, steroid hormones are formed from cholesterol, eicosanoids are formed from lipids and gas hormones are gases that exert a biological effect, such as nitric oxide.
The endocrine system regulates virtually all factors within the body. Anything in which some degree of homeostasis is required is regulated by a part of the endocrine system such as blood glucose levels or metabolic rates. The endocrine system regulates factors within the body directly, through the action of hormones, or indirectly, through knock-on effects of hormone interactions.
Homeostasis is the maintenance of steady-state conditions in a biological system. Check out the article Blood glucose concentration to learn how the endocrine system helps regulate our blood glucose levels!
Because of this wide range of impacts, the endocrine system is involved in many diseases, ranging from metabolic disorders to cancer. The study of the role the endocrine system plays in disease is known as endocrinology. Diseases caused by the endocrine system generally stem from altered levels of hormone release, inappropriately timed hormone release, the gland being missing or damaged, or the gland being overgrown and therefore overactive.
While the nervous system and the endocrine system both allow signals to be carried throughout the body, this is where their similarity ends. Nerve cells conduct electrical signals around the body. They do use chemical messengers, but only over incredibly short distances at special junctions between cells known as synapses, rather than long-distance via the bloodstream like the endocrine system does. They also generally act over a very short time period, but the signals travel quickly. This is the opposite of the endocrine signal, where due to the requirement for hormones to circulate in the blood, the response is much slower but more long-lasting as it acts until the hormones are broken down.
Read our article The Human Nervous System to learn more about this important regulatory system!
The diagram below shows the key glands of the endocrine system including the ovaries, testes, pineal gland, adrenal gland, thyroid, parathyroid, pituitary gland, hypothalamus and pancreas, each of which is discussed in depth after.
The glands of the endocrine system differ in structure quite significantly from other glands, which make up the exocrine glands. Exocrine glands, such as those found in the digestive tract or the sweat glands, secrete their products outside of the body. In order to do this, they must have a duct to carry the product to the required area. As they don't secrete their product into the blood, they have few blood vessels.
There are nine main components that form the endocrine system, these are the ovaries, testes, pineal body, adrenal gland, thyroid, parathyroid, pituitary gland, pancreas, and hypothalamus. A brief overview of each of these is given below.
The ovaries are the site of egg maturation and release, however, they also possess a significant role in hormonal control, both ovulation and many other systems. Hormones produced by the ovaries include oestrogen, inhibin and progesterone. Dysfunctions in the hormonal secretion of the ovaries can lead to several issues, one of the most common of which is Polycystic Ovary Syndrome.
The testes are the male equivalent to the ovaries, producing sperm cells instead of eggs. Like the ovaries, as well as producing gametes, they produce the hormone testosterone. Lowered hormone production by the testes, termed hypoandrogenism, leads to an array of symptoms such as genital shrinkage, low muscle mass, and frail bones amongst other symptoms.
The pineal body, also known as the pineal gland, is a small gland located within the brain. It regulates the circadian rhythm via the production of melatonin, also known as the sleep hormone. Dysregulation of melatonin production can lead to a corresponding dysregulation of the circadian rhythm and reproductive cycles.
The adrenal glands are located at the top of each kidney. Like most glands of the endocrine system, they produce an array of hormones including steroid hormones which regulate blood pressure and salt levels and the metabolism of many compounds like androgens. These are usually converted to testosterone and DHT or estrogens, depending on the gender of their owner. The other hormones produced by the adrenal glands, for which they are named, are adrenaline and noradrenaline. These are responsible for the fight or flight response and act to increase blood pressure, heart and breathing rate, and blood sugar levels.
The thyroid is located in front of the windpipe within the neck. It produces several hormones, collectively known as thyroid hormones. Two variants of thyroid hormones are produced, numbered according to the number of iodine within their structure. T3 is the active form, and T4 its prohormone, with these being secreted in a 1:14 ratio. T4 is converted to T3 by deiodinases located throughout the body. Thyroid hormones act to increase metabolism throughout the body, increase respiratory and heart rate, and regulate brain development and function.
One of the most common disorders involving the thyroid is hypothyroidism, which causes decreased levels of thyroid hormone production. This is often caused by Hashimoto's thyroiditis, a condition where the immune system attacks the thyroid.
The parathyroid glands are small glands that sit behind the thyroid. They are responsible for the regulation of blood calcium levels through the production of parathyroid hormone. This induces calcium release from the bones, along with making the kidneys increase vitamin D production and calcium ion retention. Vitamin D acts to raise calcium levels by increasing absorption within the gut. Over or underproduction of the parathyroid hormones can lead to disordered calcium levels within the blood.
The pancreas is an organ within the digestive tract. It is responsible for regulating blood sugar levels by producing the hormones glucagon and insulin. Glucagon is released from alpha cells in the pancreas and raises blood sugar. Insulin is produced by beta cells in the pancreas and lowers blood sugar levels. These work together in a pair of negative feedback loops, which maintain a narrow range of blood sugar levels. Disorders of the pancreas most commonly lead to diabetes mellitus.
Diabetes Mellitus is a disorder characterised by abnormally elevated blood glucose levels, triggered by improper production of or response to insulin, the hormone which normally lowers blood sugar levels by
Check out our article Diabetes to learn more about this prevalent disease!
The hypothalamus is the control centre of the endocrine system. It takes input from around the body and triggers the release of hormones from the pituitary gland. It does this by producing a specialised kind of hormone known as a neurohormone. These then travel down the hypophyseal system to the pituitary where they control the release of hormones from the pituitary.
The pituitary is a gland that sits at the base of the hypothalamus within the brain. It secretes a wide array of hormones, many of which regulate other glands around the body. Actions that are controlled by a series of glands and hormones are referred to as an axis, such as the hypothalamic-pituitary-adrenal axis, which regulates various systems throughout the body, including digestion, immunity, mood, libido and metabolism. Because of its role in regulating the activity of other glands, the pituitary is often referred to as the master gland. Hormones released by the pituitary include but are not limited to, human growth hormone, thyroid-stimulating hormone, luteinising hormone, follicle-stimulating hormone, anti-diuretic hormone and oxytocin. Due to the large number of systems impacted by the pituitary, many different diseases can arise from pituitary disorders.
The endocrine system is a network of glands that use feedback loops to control organs located far away from them, by releasing hormones into the circulatory system.
The endocrine system uses hormones secreted directly into the blood to control distant organs. This control is needed to maintain or adjust factors within the body.
The main glandular parts of the endocrine system are the ovaries, testes, pineal body, adrenal gland, thyroid, parathyroid, pituitary gland, pancreas and hypothalamus.
Some of the main hormones of the endocrine system are: T3 and 4, the thyroid hormones; melatonin; progesterone; testosterone; cortisol; insulin; and oestrogen.
The endocrine system regulates homeostasis within the body, maintains the rhythms of changes in the body and allows the body to respond to changes in the environment, like with adrenaline aiding in the fight or flight response.
Flashcards in Endocrine System120
Start learningWhat compounds concentration does insulin regulate?
Glucose
What type of feedback system does insulin operate in?
Negative
What cells are the main stores of glycogen?
Muscle
Is glycogen a short-term or long-term storage molecule?
Short-term
What is the long-term storage molecule for glucose?
Triglycerides
How many amine residues does insulin have before undergoing post-translational modification?
110
Already have an account? Log in
Open in AppThe first learning app that truly has everything you need to ace your exams in one place
Sign up to highlight and take notes. It’s 100% free.
Save explanations to your personalised space and access them anytime, anywhere!
Sign up with Email Sign up with AppleBy signing up, you agree to the Terms and Conditions and the Privacy Policy of StudySmarter.
Already have an account? Log in